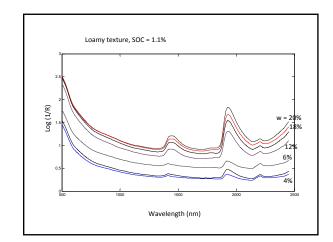
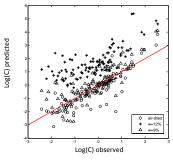
2nd Global Workshop on Proximal Soil Sensing. Montreal May 15-18 2011


Removing the effect of moisture from NIR-DRS for prediction of soil carbon content

Alex. B. McBratney, Budiman Minasny, Veronique Bellon-Maurel, Jean-Michel Roger, Alexia Gobrecht, Laure Ferrand, Samuel Joalland



Prediction of SOC from PLS calibrated on spectra of air-dried soil

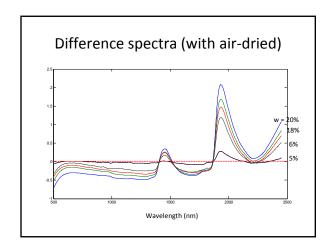
EPO (empirical parameter orthogonalisation)

- *S* is the *m*-dimensional (no wavelengths) space of the measured spectra.
- S = C + G + R
- C: chemical spectral responses independent of G;
- *G* : spectra caused by external parameter effect, independent from *C*;
- R = independent residual

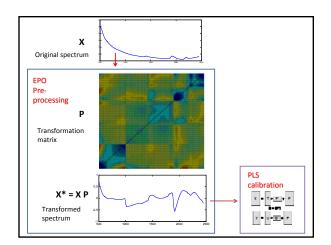
EPO

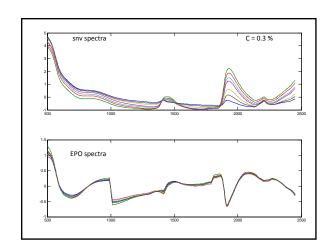
In matrix form, the spectra can be written as:

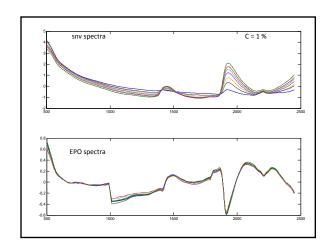
X = XP + XQ + R [n obs by m wavelengths]

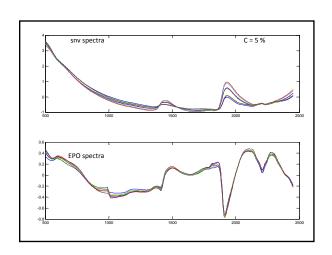

P is the projection of the useful part of the spectra: **X*** = **XP** [**P** is m by m]

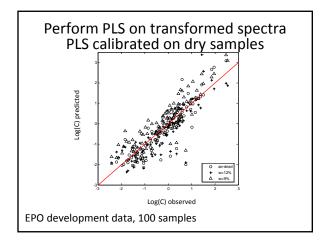
Q is the projection of the not useful part (influenced by moisture) of the spectra: **X**⁺ = **XQ**

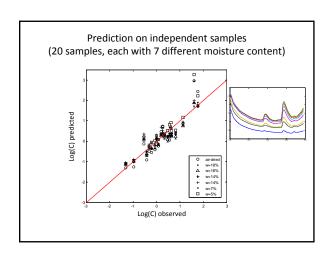

R is the residual


EPO


- To obtain **X*** = **X(P)**
- P = I − Q (m by m symmetric matrix)
- Q can be estimated from a matrix of difference spectra D (n by m)
- D = X_{dry} X_{moist}
- $\mathbf{Q} = \mathbf{G} \mathbf{G}^{\mathsf{T}}$ (**G** is n by m)
- ${\bf G}$ is estimated by the c Principal Components of ${\bf D}$




Calibration strategy **EPO Development Dataset** Contain spectra of soil under various field conditions (varying moisture) and Spectra at standard moisture condition Validation dataset Contain measured SOC and spectra (air-dried) n = 60-100 of soil under SPECTRA -> EPO Spectra various moisture conditions SPECTRA -> EPO -> APPLY PLS Model calibration Dataset n ~ 20-100 Contain measured SOC and spectra (e.g at air-dried) SPECTRA -> EPO -> DEVELOP e.g. PLS n > 200



Conclusions

- This first experiment shows a practicable and robust method to predict soil organic carbon independent of (field) moisture content.
- Pre-processing the data with the EPO method allows removal of the moisture effect, to a large degree, which improves the quality of the prediction model.

 We propose 3 independent datasets for the field NIR calibration procedure:
- - The calibration dataset
 - The EPO development dataset
 - The validation dataset
- We need to further investigate the effect of the EPO spectral transformation on the prediction of other soil properties.

• Budiman Minasny, Alex. B. McBratney, Veronique Bellon-Maurel, Jean-Michel Roger, Alexia Gobrecht, Laure Ferrand, Samuel Joalland. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil carbon. Geoderma (Submitted)

Acknowledgment

This work is part of project INCA (in-field estimation carbon) funded by Le Ministère de l'Écologie, du Développement durable, des Transports et du Logement through its GESSOL (Gestion Durable des Sols) program.