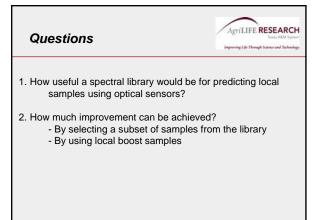
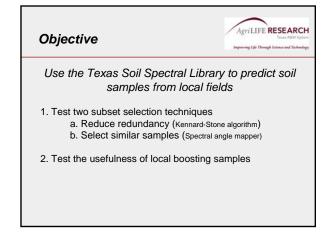
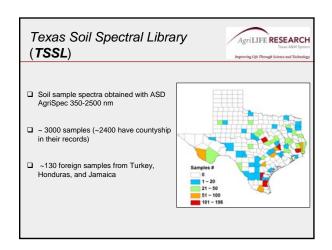

Using soil spectral libraries in support of proximal soil sensing


Yufeng Ge¹, Cristine L.S. Morgan², J. Alex Thomasson¹


¹Biological & Agricultural Engineering, Texas A&M University, TX, USA ²Soil & Crop Sciences, Texas A&M University, TX, USA


Workshop on Proximal Soil Sensing May 15-18, 2011 | Montreal, CA

Methods

- ☐ Use the first derivative spectra and focus on soil organic carbon
- ☐ Model calibration: PLSR, 25 segments cross validation, the first local minimum for RMSE_{cv}
- ☐ 6 local fields (40-100 ha) 50 soil samples each field
 - 25 samples used for validation
 - 25 were reserved for local boosting
- □ Calibration Models
 - Full Texas Spectral Library (TSSL)
 - Kennard-Stone algorithm
 - Kennard-Stone algorithm + local Boosting
 - Spectral Angle Mapper
 - Spectral Angle Mapper + local Boosting

Kennard-Stone-algorithm

- 1. Find the 2 samples in the population with the highest distance between them.
- 2. For all candidate samples, find the smallest distances between each candidate and one of the already chosen samples.
- 3. Find the maximum of the smallest distances and the associated candidate is chosen.
- 4. Repeat procedure until a predefined size is reached.
- --result keep 30% of library is redundant

Spectral angle mapper

Assume that the reflectance spectra of two soil samples are $\textbf{\textit{X}}\,(x_1,\,x_2,\,...,\,x_n)$ and $\textbf{\textit{Y}}\,(y_1,\,y_2,\,...,\,y_n),$ the spectral angle mapper measures the angle $\boldsymbol{\theta}$ between them:

$$\theta(X,Y) = \arccos(\frac{\langle X,Y \rangle}{\mid X \parallel Y \mid})$$

 $\langle X, Y \rangle = x_1y_1 + x_2y_2 + ... + x_ny_n$ is the inner product of X and Y

$$|X| = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$$
 is the modulus of X

Results: RPD Values

Field	Library	K-S	K-S+	SAM	SAM+
	only(RMSD)		Boost		Boost
McLennan	1.6 (3.9)	1.6	1.6	1.3	1.5
Erath1	1.4 (9.2)	1.5	1.5	2.1	2.0
Erath2	1.6 (5.0)	1.6	1.7	1.5	1.7
Erath3	1.5 (5.7)	1.5	1.6	1.4	1.7
Comanche1	1.6 (6.9)	1.6	1.6	1.9	1.9
Comanche2	2.0 (4.7)	2.0	2.0	1.7	1.6

K-S = Kennard-Stone algorithm (70% retention) SAM = Spectral Angle Mapper

Results: Bias g kg-1

Field	Library only	K-S	K-S+ Boost	SAM	SAM+ Boost
	0,		20001		20001
McLennan	1.2	1.5	2.1	0.5	0.6
Erath1	-2.9	-2.5	-2.8	0.0	-2.0
Erath2	0.1	1.2	0.7	0.6	0.4
Erath3	-1.8	0.5	-0.5	-1.0	0.1
Comanche1	1.2	0.9	0.6	1.2	1.3
Comanche2	-0.7	0.0	-0.4	0.2	-0.6

K-S = Kennard-Stone algorithm (70% retention) SAM = Spectral Angle Mapper

Conclusions

- ☐ Calibration with whole library calibration:
 - > Satisfactory results; RMSE 3.9-9.2 g kg-1
- ☐ Calibration with Kennard-Stone algorithm
 - Maintained or improved RMSD and RPD
 - > Boosting maintained or improved over K-S alone
- ☐ Calibration with Spectral Angle Mapper algorithm
 - > Larger gains and losses compared to K-S
 - ➤ 2:2:2 improved:same:worse
 - > Boosting 3:2:1 improved:same:worsened