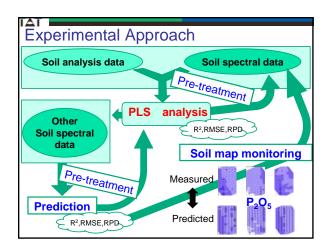
Soil P₂O₅ Calibration and Mapping using Real-time Soil Sensor (RTSS)

ΤΔΤ

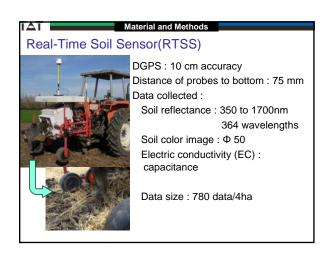
Yuya Nagami, Sakae Shibusawa, Masakazu kodaira, Ryuhei Kanda

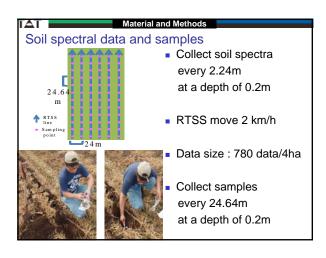
Tokyo University of Agriculture and Technology

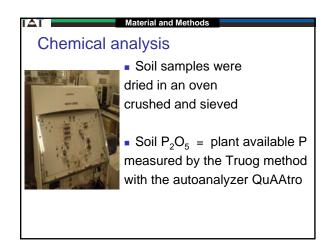
Objective

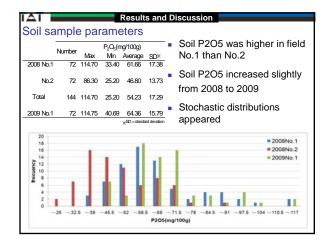

- To measure the soil P₂O₅ by RTSS
- To create soil P₂O₅ maps for site-specific management

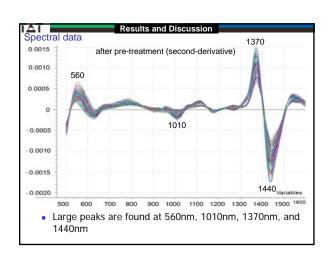
Destination

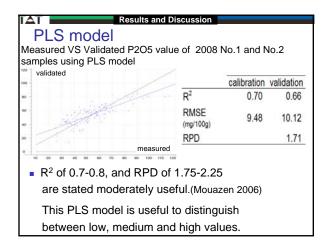

- R², RMSE, and RPD values of the PLS model for soil P₂O₅ were 0.66, 10.12(mg/100g), 1.71
- Similar P₂O₅ containing areas were found between measured and predicted maps, and locations are almost acceptable to make decision


Back ground

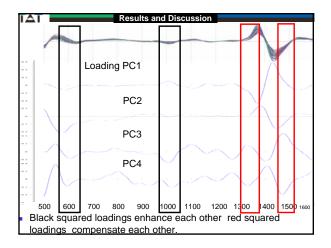

- Japan has faced the increased price by 1.6 times.
- Phosphorus P₂O₅ became a limited nutrition.
- Save and use it efficiently as requested.
- Describe the variability across the field.

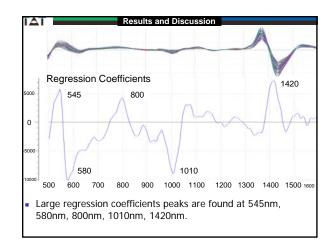


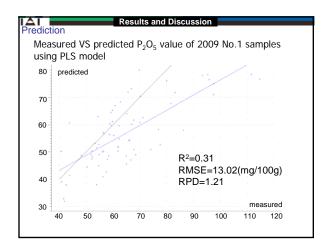

Spectral data analysis

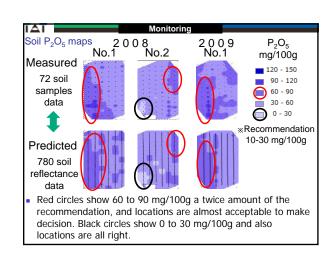

- Vis-NIR soil reflectance spectra subjected to Savitzky-Golay second derivative treatment
- A partial least squares (PLS) model for the soil P₂O₅ was calculated with full cross validation by Umscrambler 9.8
- R-square(R²), root mean square error(RMSE) and residual prediction deviations (RPD) are calculated. RPD is the ratio of standard deviation of the measured to the RMSE.

Soil mapping


- Measured and Predicted map was created as inverse distance weighted (IDW) maps using ArcMap 9.2
- Measured map was derived from data of measured soil P₂O₅
- Predicted map was derived from data of predicted soil P₂O₅ calculated with the PLS model from soil reflectance spectra data







Authors	Year	ear Soil analysis		Units		Spectral range (nm)		Multivariate method	
This paper		Truog	mg/100g		350-1700		PLSR (4)		
Matunaga	1992	Truog	mg/100g		1100-2500		MR		
Chang CW	2001 1	Mehlich∭	mg/kg		400-2498		PCR		
Mouazen	2006	Olsen	mg/1	.00g	305-1	1710	PLSR		
Authors	Sample P		R		ASE .	R	2	DDI	
	size	Max	Min	Cal	Val	Cal	Val	RPL	
This paper	144	114	25	9.47	10.1	0.70	0.66	1.71	
Matunaga	120						0.69		
Chang CW	779	507.6	0.7	32	2.28	0.40			
Mouazen	204	11.63	2.95	0.943	1.202	0.83	0.73	1.92	

Conclusion

Conclusion

- R^2 , RMSE, and RPD values of the PLS model for soil P_2O_5 were 0.66, 10.12(mg/100g), 1.71
- The R² value of validation showed that the PLS model for soil P₂O₅ in this study was at least as accurate as that in other studies
- Similar P₂O₅ containing areas were found between measured and predicted maps, and locations are almost acceptable to make decision.

