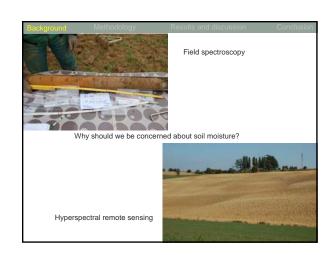
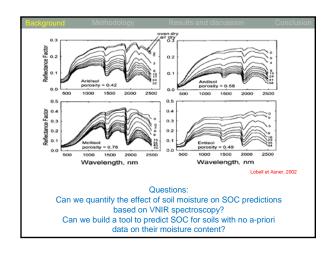
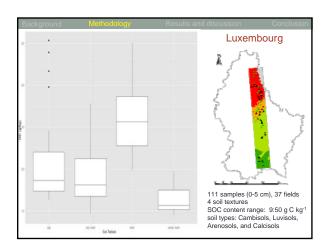
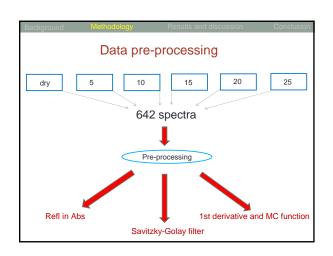

IMPROVING SPECTRAL TECHNIQUES TO **DETERMINE SOIL ORGANIC CARBON BY** ACCOUNTING FOR SOIL MOISTURE EFFECTS

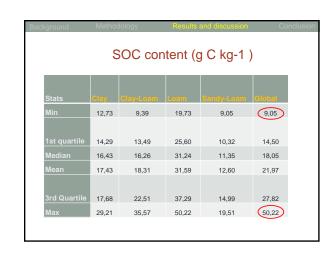

> Marco Nocita Antoine Stevens Bas van Wesemael

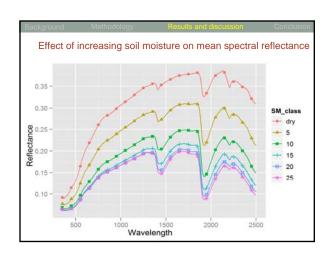

- Background
 Predicting soil organic carbon (SOC) using soil spectroscopy
 - Soil moisture and spectral reflectance
 - Research objectives
- Methodology
 Study area

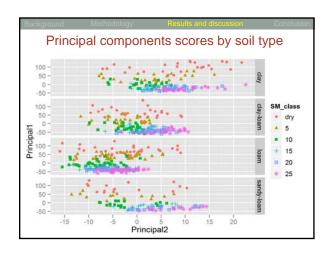

 - Soil analyses
 - Spectral measurements and data pre-processing
 - Soil moisture and SOC prediction models
- · Results and discussion
 - Soil moisture effect on spectral reflectance
 - SOC predictions per moisture levels
 Soil moisture prediction model

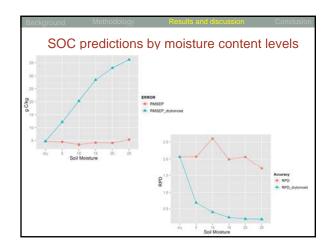
 - SOC modeling based on moisture content prediction
- Conclusions and follow-up

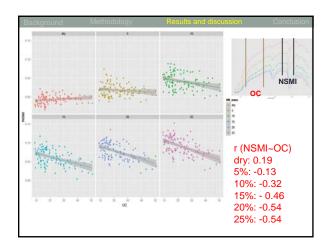


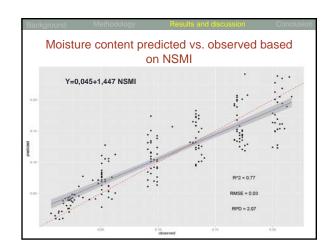


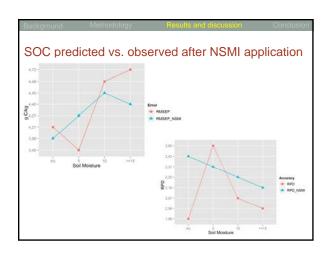



Soil analyses Soil samples: air dried, smashed and sieved (<2mm) SOC: dry-combustion with a VARIOMAX C/N analyser Moisture content: oven-dried at 105 °C during 24 h ...and spectral measurements ASD Fieldspec-Pro radiometer (350-2500 nm) Contact probe specific for soils (2-cm-diameter) Samples artificially wetted until reaching 5, 10,15, 20, and 25% MC

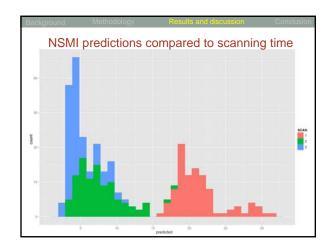


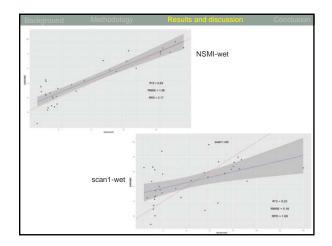

Soil moisture and SOC prediction models Dataset was divided in training (2/3) and test set (1/3) SOC prediction: Partial least square regression (PLSR) leave one-out cross-validation of the training set (CV) to choose the latent factors (max=10) Independent validation of the test set Moisture content: Normalized soil moisture index (NMSI) (Haubrock et al., 2008) NSMI= [R(1800) - R(2119)] / [R(1800) + R(2119)]⁻¹ Linear regression between GSM and NSMI





Belgium Loam-Belt


- 30 soil cores (1m depth)
- 110 soil samples (10 cm)
- 330 soil spectra (3 times at different soil moisture)
- SOC range: 0.3 to 14 g C kg⁻¹
- Moisture content ranges (gravimetric):
 - 1st scan: ~15:35 %
 - 2nd scan: ~ 2 : 17%
 - 3rd scan: ~ 1 : 6%


MC predictions: 10% of soil samples (random selection)

First application: profiling in a field (central Belgium)

- 30 soil cores (1m depth)
- 110 soil samples (10 cm)
- 330 soil spectra (3 times at different soil moisture)
- ${\circ}$ SOC range: 0.3 to 14 g C $kg^{\text{-}1}$
- Moisture content ranges (gravimetric):
 - 1st scan: ~15: 35 %
 - 2nd scan: ~ 2 : 17%
- 3rd scan: ~ 1 : 6%
- MC predictions:10% of soil samples

Soil moisture is an important factor in soil

- spectroscopy
 Strong influence on spectral reflectance from dry to 15% moisture content
- Accuracy decrease when dry model is applied to moist soils
- Constant error for SOC predictions at different moisture
- NSMI easy and fast tool to develop moisture content classified predictions
- No accuracy decrease of SOC prediction after NSMI classification

Follow-up

Test of NSMI application under uncontrolled soil moisture

- 1.Other profiling soil spectroscopy
- 2. Hyperspectral remote sensing

Thanks for your attention

marco.nocita@uclouvain.be