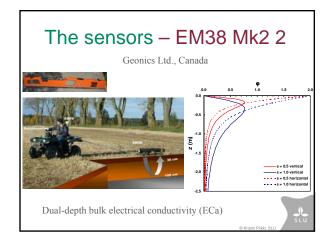
Sensor data fusion for topsoil mapping

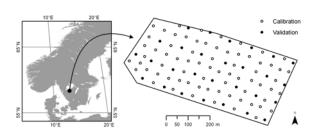
Kristin Piikki, Mats Söderström, Bo Stenberg Swedish University of Agricultural Sciences, Department of Soil and Environment,


Precision agriculture and pedometrics.

Kristin Piikki, SLU

Aim

Evaluate and compare the ability of different combinations of proximal data to predict topsoil clay content



Reference data

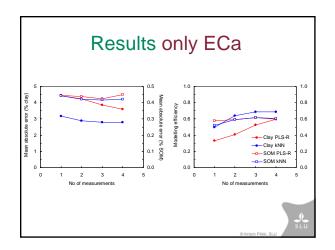
Contents of clay and soil organic matter (SOM) from soil samples

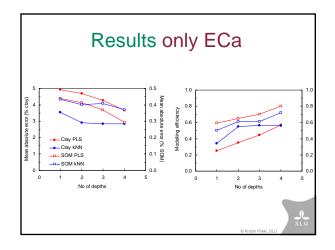
Hypotheses

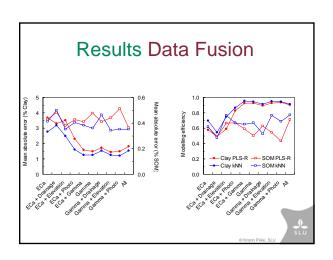
- 1) ECa measurements from multiple occasions would perform better than one ECa measurement alone.
- 2) ECa measurements with multiple measurement depths would perform better than one single-depth ECa measurement.
- 3) Using the ECa and the γ radiation sensor together would improve predictions compared to using one sensor alone.
- 4) Introducing information on spatial variation patterns by adding relevant ancillary data would improve the predictions of either

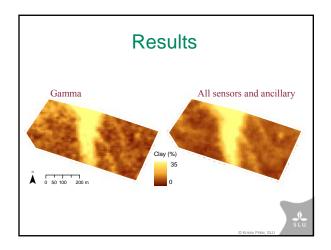
Methods

- Calculate all types of independent data to a common grid (10×10m²)
- Extract data from soil sampling locations
- Calibrations (70 sample cells)
- Validation (28 remaining sample cells)
- Prediction (all grid cells)


Study design


(calibrations made)


2 dependent variables (Contents of clay and soil organic matter, SOM)


26 sets of independent data

2 prediction methods (Partial least squares regression, PLS-R, and k-Nearest Neighbour, kNN)

Summary

If you have an ECa sensor, you could probably improve your predictions of topsoil clay content by:

- increasing the number of measurement depths
- increasing the number of measurement occasions
- add radiance data from aerial photo or gamma radiation data or both
- use kNN instead of PLS-R

If you have a gamma radiation sensor, you could probably predict topsoil clay content rather accurately from one sensor measurement alone.

© Kristin Piikki, SLU