Session 2 . Sensing of soil & crop

- Ever higher resolution temporal & spatial data. How high do we need? – from satellite, near-ground & in-situ sensors
- Sensor resolution must be related to application equipment resolution
- Must be related to SV scale
- Depends! (mentioned that N varies even at the leaf scale)
- Increasing resolution is costly must be related to equipment capability
- Larger machines (so increasing width) losing resolution for variable application?)

2. What should we sense?

- -Understanding of the soil-crop-environment system is lacking in the spatial realm.
- -So what do we measure?
- -What factors affect and limit yield? We should measure these. Again, our understanding of the system is limited.

3. We have many 'data layers'. These must be integrated to provide usable information

- -How to integrate remote-sensed and ground collected data?
- -If we are missing one data layer, we are missing everything!
- -The weakest link is the coarsest layer of data
- -On-the-go sensing must be complemented by historical data layers (both recent and older historical data)

4. What does the farmer need?

- -Simplest system possible!
- -Data/info is the tool to enable the farmer to make intelligent management decisions
- -Yield limiting factors must be known
- -A good field agronomist to interpret the data or could
- $\hbox{`intelligent advisor' app on the farmer's smart \ phone do?}\\$
- -Confidence in the data uncertainty in data leads to uncertain decision making!
- -Accurate yield sensing (yield affects every other decision)

Session 1 . Automation & robotics

- 1. Small robotic machine to intelligently manage crops, plant by plant (assume high value crops?)
- -'free-range' robotics modelled on living organisms such as invertebrates $% \left(1\right) =\left(1\right) \left(1\right)$
- -Control of robots safety concerns. Human intervention must be part of the system
- -Robotics for pre-plant operations such as tillage and side-dress fertiliser
- -Can robotics be used in soil remediation

2. Automatic control of field machines

- -Auto-guidance
- -Smart sprayer incorporating image analysis for weed/crop discrimination
- -More efficient harvesting mechanisms reduce grain loss
- -Robotic scanning to map grain loss

3. Farmer response to automation

- -Younger, more highly-qualified farmers
- -Agricultural production is about risk minimisation. Will farmers spend on hi-tech?
- -Social acceptability of robots?

4. Likely uptake of robotics

-Robotic weeding, selective harvesting in 5-10 yr

Session 3 . Fertiliser & other agro-inputs

1. Chemical control of weeds/pests

- -Here for at least 10 yr
- -Product registrations being lost at high rate
- -PA to enable dose minimisation and selective application
- -Regulators guided environmental restraints not by crop requirement
- -Timeliness critical

2. Fertiliser application

- -SV management of N can meet both profit & environmental targets
- -Largest uncertainty is weather so temporal (season to season) variability more important than SV
- -Precise prediction of precipitation required
- -On site (- or field) weather stations improve prediction
- -More accurate (and local) weather stations for radiation & precipitation
- -Management zones too restrictive ('Mother Nature doesn't work in MZs'!)

3. Questions / comments on N

- -Is N the limiting factor
- -Where does N go?
- -Determining N rate for VRT is difficult
- -Do N rates have to be precise? (flat-topped response curve)

Session 4 . Irrigation, drainage, soil management

1. Irrigation

- -Precision irrigation and fertigation in high value fruit crops (price of raspberries: $\pm 6k / t$)
- -Irrigation management zones can be based on elevation and soil $\ensuremath{\mathsf{EC}}$ data
- -Sensors required to increase water use efficiency, manage soil salinity, conserve water
- -Wireless network soil sensors can be used for irrigation control

2. Soil management

- -Compaction is main area of concern
- -Compaction reduces yield, increases draft force, affects infiltration rate, destroys soil structure
- -Compaction to cost £1 bn / yr
- -Controlled traffic farming benefits: 8-35% yield increase, greatly reduced tillage forces, improved soil structure (but wheelways can cause problems)

3. Sensing needs

- -Biotic/abiotic crop stress
- -Fruit quality non-destructively
 -Compaction
 -Soil bulk density

- -Plant water stress
- -Salt stress
- -Soil moisture tension, wetting front.